Large Scale Musical Instrument Identification

نویسندگان

  • Emmanouil Benetos
  • Margarita Kotti
  • Constantine Kotropoulos
چکیده

In this paper, automatic musical instrument identification using a variety of classifiers is addressed. Experiments are performed on a large set of recordings that stem from 20 instrument classes. Several features from general audio data classification applications as well as MPEG-7 descriptors are measured for 1000 recordings. Branch-and-bound feature selection is applied in order to select the most discriminating features for instrument classification. The first classifier is based on non-negative matrix factorization (NMF) techniques, where training is performed for each audio class individually. A novel NMF testing method is proposed, where each recording is projected onto several training matrices, which have been Gram-Schmidt orthogonalized. Several NMF variants are utilized besides the standard NMF method, such as the local NMF and the sparse NMF. In addition, 3-layered multilayer perceptrons, normalized Gaussian radial basis function networks, and support vector machines employing a polynomial kernel have also been tested as classifiers. The classification accuracy is high, ranging between 88.7% to 95.3%, outperforming the state-of-the-art techniques tested in the aforementioned experiment. Keywords— Musical instrument identification, Nonnegative matrix factorization, MPEG-7 audio descriptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Music Instrument Identification Using MFCC: Erhu as an Example

In the analysis of musical acoustics, we usually use the power spectrum to describe the difference between timbres from two music instruments. However, according to our experiments, the power spectrum cannot be used as effective features for erhu instrument identification. In this paper, we use MFCC (mel-scale frequency cepstral coefficients) as features for music instrument identification usin...

متن کامل

BAYESIAN APPROACHES TO MUSICAL INSTRUMENT CLASSIFICATION USING TIMBRE SEGMENTATION by

The task of identifying musical instruments in an audio recording is a difficult problem. While there exists a body of literature on single instrument identification, little research has been performed on the more complex, but real-world, situation of more than one instrument present in the signal. This work proposes a Bayesian method for multi-label classification of musical instrument timbre....

متن کامل

Acoustical-similarity-based Musical Instrument Hierarchy and Its Application to Musical Instrument Identification

This paper describes a method of constructing a musical instrument hierarchy reflecting the similarity of acoustical features. Although this acoustical hierarchy is useful for various purposes as well as investigating the timbres of musical instruments, it has not been reported in the literature. The main issues in constructing such a hierarchy are what feature space is used and how to obtain t...

متن کامل

Perceptually Salient Regions of the Modulation Power Spectrum for Musical Instrument Identification

The ability of a listener to recognize sound sources, and in particular musical instruments from the sounds they produce, raises the question of determining the acoustical information used to achieve such a task. It is now well known that the shapes of the temporal and spectral envelopes are crucial to the recognition of a musical instrument. More recently, Modulation Power Spectra (MPS) have b...

متن کامل

Classification of Musical Timbre Using Bayesian Networks

In this article, we explore the use of Bayesian networks for identifying the timbre of musical instruments. Peak spectral amplitude in ten frequency windows is extracted for each of 20 time windows to be used as features. Over a large data set of 24,000 audio examples covering the full musical range of 24 different common orchestral instruments, four different Bayesian network structures, inclu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007